direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4×C8.C22, C42.442D4, C42.274C23, Q16⋊4(C2×C4), (C4×Q16)⋊27C2, SD16⋊2(C2×C4), C4.134(C4×D4), C8.1(C22×C4), (C4×SD16)⋊12C2, (C4×M4(2))⋊2C2, M4(2)⋊8(C2×C4), C4.22(C23×C4), D4.5(C22×C4), C22.47(C4×D4), C4○2(Q16⋊C4), Q16⋊C4⋊33C2, Q8.5(C22×C4), C4⋊C4.362C23, (C4×C8).173C22, (C2×C8).413C23, (C2×C4).202C24, (C22×C4).711D4, C23.644(C2×D4), C4○3(SD16⋊C4), SD16⋊C4⋊55C2, (C2×D4).371C23, (C4×D4).292C22, (C2×Q8).344C23, (C4×Q8).275C22, C4○3(M4(2)⋊C4), M4(2)⋊C4⋊47C2, C2.D8.212C22, C4.Q8.126C22, C8⋊C4.112C22, C4○2(C23.38D4), C4○3(C23.36D4), C23.38D4⋊39C2, C2.5(D8⋊C22), (C2×C42).767C22, (C22×C4).923C23, (C2×Q16).152C22, C22.146(C22×D4), D4⋊C4.196C22, Q8⋊C4.196C22, (C2×SD16).108C22, C23.36D4.15C2, (C22×Q8).463C22, C42⋊C2.298C22, (C2×M4(2)).351C22, (C2×C4×Q8)⋊33C2, C2.62(C2×C4×D4), (C2×Q8)⋊29(C2×C4), C4.10(C2×C4○D4), C4○D4.20(C2×C4), (C4×C4○D4).14C2, (C2×C4).692(C2×D4), C2.6(C2×C8.C22), (C2×C4).69(C22×C4), (C2×C4).263(C4○D4), (C2×C4⋊C4).913C22, (C2×C8.C22).13C2, (C2×C4)○(M4(2)⋊C4), (C2×C4○D4).292C22, SmallGroup(128,1677)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4×C8.C22
G = < a,b,c,d | a4=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, dcd=b4c >
Subgroups: 372 in 242 conjugacy classes, 142 normal (44 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C4×C8, C8⋊C4, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C4×Q8, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, C4×M4(2), C23.36D4, C23.38D4, M4(2)⋊C4, C4×SD16, C4×Q16, SD16⋊C4, Q16⋊C4, C2×C4×Q8, C4×C4○D4, C2×C8.C22, C4×C8.C22
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, C24, C4×D4, C8.C22, C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, C2×C8.C22, D8⋊C22, C4×C8.C22
(1 61 53 21)(2 62 54 22)(3 63 55 23)(4 64 56 24)(5 57 49 17)(6 58 50 18)(7 59 51 19)(8 60 52 20)(9 46 34 27)(10 47 35 28)(11 48 36 29)(12 41 37 30)(13 42 38 31)(14 43 39 32)(15 44 40 25)(16 45 33 26)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 53)(2 56)(3 51)(4 54)(5 49)(6 52)(7 55)(8 50)(9 36)(10 39)(11 34)(12 37)(13 40)(14 35)(15 38)(16 33)(17 57)(18 60)(19 63)(20 58)(21 61)(22 64)(23 59)(24 62)(25 42)(26 45)(27 48)(28 43)(29 46)(30 41)(31 44)(32 47)
(1 28)(2 25)(3 30)(4 27)(5 32)(6 29)(7 26)(8 31)(9 64)(10 61)(11 58)(12 63)(13 60)(14 57)(15 62)(16 59)(17 39)(18 36)(19 33)(20 38)(21 35)(22 40)(23 37)(24 34)(41 55)(42 52)(43 49)(44 54)(45 51)(46 56)(47 53)(48 50)
G:=sub<Sym(64)| (1,61,53,21)(2,62,54,22)(3,63,55,23)(4,64,56,24)(5,57,49,17)(6,58,50,18)(7,59,51,19)(8,60,52,20)(9,46,34,27)(10,47,35,28)(11,48,36,29)(12,41,37,30)(13,42,38,31)(14,43,39,32)(15,44,40,25)(16,45,33,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,53)(2,56)(3,51)(4,54)(5,49)(6,52)(7,55)(8,50)(9,36)(10,39)(11,34)(12,37)(13,40)(14,35)(15,38)(16,33)(17,57)(18,60)(19,63)(20,58)(21,61)(22,64)(23,59)(24,62)(25,42)(26,45)(27,48)(28,43)(29,46)(30,41)(31,44)(32,47), (1,28)(2,25)(3,30)(4,27)(5,32)(6,29)(7,26)(8,31)(9,64)(10,61)(11,58)(12,63)(13,60)(14,57)(15,62)(16,59)(17,39)(18,36)(19,33)(20,38)(21,35)(22,40)(23,37)(24,34)(41,55)(42,52)(43,49)(44,54)(45,51)(46,56)(47,53)(48,50)>;
G:=Group( (1,61,53,21)(2,62,54,22)(3,63,55,23)(4,64,56,24)(5,57,49,17)(6,58,50,18)(7,59,51,19)(8,60,52,20)(9,46,34,27)(10,47,35,28)(11,48,36,29)(12,41,37,30)(13,42,38,31)(14,43,39,32)(15,44,40,25)(16,45,33,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,53)(2,56)(3,51)(4,54)(5,49)(6,52)(7,55)(8,50)(9,36)(10,39)(11,34)(12,37)(13,40)(14,35)(15,38)(16,33)(17,57)(18,60)(19,63)(20,58)(21,61)(22,64)(23,59)(24,62)(25,42)(26,45)(27,48)(28,43)(29,46)(30,41)(31,44)(32,47), (1,28)(2,25)(3,30)(4,27)(5,32)(6,29)(7,26)(8,31)(9,64)(10,61)(11,58)(12,63)(13,60)(14,57)(15,62)(16,59)(17,39)(18,36)(19,33)(20,38)(21,35)(22,40)(23,37)(24,34)(41,55)(42,52)(43,49)(44,54)(45,51)(46,56)(47,53)(48,50) );
G=PermutationGroup([[(1,61,53,21),(2,62,54,22),(3,63,55,23),(4,64,56,24),(5,57,49,17),(6,58,50,18),(7,59,51,19),(8,60,52,20),(9,46,34,27),(10,47,35,28),(11,48,36,29),(12,41,37,30),(13,42,38,31),(14,43,39,32),(15,44,40,25),(16,45,33,26)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,53),(2,56),(3,51),(4,54),(5,49),(6,52),(7,55),(8,50),(9,36),(10,39),(11,34),(12,37),(13,40),(14,35),(15,38),(16,33),(17,57),(18,60),(19,63),(20,58),(21,61),(22,64),(23,59),(24,62),(25,42),(26,45),(27,48),(28,43),(29,46),(30,41),(31,44),(32,47)], [(1,28),(2,25),(3,30),(4,27),(5,32),(6,29),(7,26),(8,31),(9,64),(10,61),(11,58),(12,63),(13,60),(14,57),(15,62),(16,59),(17,39),(18,36),(19,33),(20,38),(21,35),(22,40),(23,37),(24,34),(41,55),(42,52),(43,49),(44,54),(45,51),(46,56),(47,53),(48,50)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4AB | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4○D4 | C8.C22 | D8⋊C22 |
kernel | C4×C8.C22 | C4×M4(2) | C23.36D4 | C23.38D4 | M4(2)⋊C4 | C4×SD16 | C4×Q16 | SD16⋊C4 | Q16⋊C4 | C2×C4×Q8 | C4×C4○D4 | C2×C8.C22 | C8.C22 | C42 | C22×C4 | C2×C4 | C4 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 16 | 2 | 2 | 4 | 2 | 2 |
Matrix representation of C4×C8.C22 ►in GL6(𝔽17)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 2 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 10 | 12 | 12 |
0 | 0 | 7 | 7 | 5 | 12 |
0 | 0 | 2 | 2 | 10 | 7 |
0 | 0 | 15 | 2 | 10 | 10 |
16 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 13 |
0 | 0 | 0 | 1 | 4 | 0 |
G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,16,0,0,0,0,2,1,0,0,0,0,0,0,7,7,2,15,0,0,10,7,2,2,0,0,12,5,10,10,0,0,12,12,7,10],[16,16,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,13,1,0,0,0,4,0,0,1,0,0,0,0,0,4,0,0,0,0,13,0] >;
C4×C8.C22 in GAP, Magma, Sage, TeX
C_4\times C_8.C_2^2
% in TeX
G:=Group("C4xC8.C2^2");
// GroupNames label
G:=SmallGroup(128,1677);
// by ID
G=gap.SmallGroup(128,1677);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,456,184,2019,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,d*c*d=b^4*c>;
// generators/relations